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A statistical thermodynamics theory ofpolydisperse polymers based on a lattice model of fluids is formulated. 
Pure polydisperse polymer can be completely characterized by three scale factors and the molecular weight 
distribution of the system. The equation of state does not satisfy a simple corresponding-states principle, 
except for a polymer fluid of sufficiently high molecular weight. The relationships between thermal expansion 
coefficient ~ and isothermal compressibility fl with reduced variables are also predicted. 
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INTRODUCTION 

The statistical thermodynamics of polymer solutions and 
blends is of increasing importance with the development 
of polymer science. However, for most theories of 
polymer solutions and blends, e.g. the Flory-Huggins ~ 
solution theory, the equation-of-state theory 2-9 and 
others~O-~l, the polymer has been taken as a 
monodisperse fluid. When a polydisperse polymer system 
is considered, a correction factor 6 is introduced to reduce 
it to a monodisperse result. Polydispersity, which is an 
intrinsic attribute of polymers, is avoided. In the 1980s, 
Kleintjens and Koningsveld ~2-16 used a mean-field 
lattice gas model for polymer fluids and considered 
multicomponent polymer systems, but the theory did not 
thoroughly solve the influences ofpolydispersity on phase 
separation. 

In this paper, a polymer is regarded as a polydisperse 
fluid from the outset and is treated with the statistical 
thermodynamics of lattice fluids. Some important 
relationships can be obtained from the theory and the 
influence of polydispersity can be accounted for. The 
more generalized result reduces to the pure lattice fluid 
(LF) theory of Sanchez and Lacombe 7 as a special 
case when the polydispersity index, q, equals unity 
(q = M w / M n ) .  

THEORY 

M o d e l  description 

Consider a polydisperse linear polymer system, 
consisting of a succession of molecules of different chain 
lengths and vacant lattice sites (holes). In this system, 
there are N~ molecules each of which occupies rx sites 
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(a rl-mer ), N 2 molecules each of which occupies r 2 sites 
(a rz-mer) . . . . .  N k molecules each of which occupies r k 
sites (a rk-mer) and No vacant lattice sites (holes), and 
the total number of molecules is N, where: 

k 

N = N I  + N2  + . . .  + Nk = ~ N i (1) 
i= l  

The total number of lattice sites for a system of 
Nlrl-mers, N2r2-mers, . . . ,  Nkrk-mers  and N O empty sites 
(holes) is: 

N r = N O + r l N ~  + r2N2 + . . .  + rkNk 

k 
= N O + ~ riNi 

i= l  

where 

= N O + r N  (2) 

k k 

r = ~ r , N , / N  = ~ x,ri (3) 
i=1 i=1 

x i = N ~ / N  (4) 

The coordination number of the lattice is z. Each 
interior mer of a linear chain is surrounded by (z - 2) 
nearest non-bonded neighbours and two bonded 
neighbours ; mers at the chain ends have (z - 1 ) nearest 
non-bonded neighbours and one bonded neighbour. 
Thus, each ri-mer is surrounded by qiz nearest 
non-bonded neighbours where: 

qiz = (r i -  2 ) ( z -  2) + 2 ( z -  1) 
= r ~ ( z -  2) + 2 (5) 

q~ will be regarded as a valid chain length to a r~-mer. 
The total number of nearest neighbour pairs in the 

system is ( z / 2 ) N , .  Only ( z / 2 ) N q  are non-bonded pairs 
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where" 
k 

Nq = N O + ~ qiNi (6) 
i = 1  

The numbers N r, Nq, No and N are correlated by: 

(z/2)Nq = (z/2 - 1)Nr + N + N O (7) 

A r~-mer is characterized by a symmetry number ~h. 
For example, for a linear r~-mer it is equal to two if the 
chain ends are indistinguishable and to unity if the chain 
ends are distinguishable. 

A ri-mer is also characterized by a 'flexibility 
parameter'  fii. It is equal to the number of ways in which 
the r~-mer can be arranged on the lattice after one of its 
mers has been fixed on a lattice site. It is a measure of 
the ri-mer internal degrees of freedom. In general, for 
r~-mer the maximum value for ~ is- 

( 6 i ) m a  x ~-- Z(Z -- 1) ' ' -2 (8) 

According to Guggenheim's derivation ~v-~9, the 
number of configurations available to a system consisting 
of Nxrl-mers, N2rz-mers, . . . ,  Nkrk-mers and N o empty 
sites is : 

\0"1,/  \ a 2 /  \17k,/ N o ! N I ! N 2 !  . . . N k !  

x (NJN,)  ~/2 

\ a l /  _1 ~ Ni,\Nfl~.; (9) 

i = 0  

As a result of the Flory approximation 2°, when z is 
very large, we have: 

(l~N°(~l~N'(Oge~N2...(091,~ Nk 
lim t2 = \foo) \ Z )  \ ~ J  \ f k .  ] 
g~oo 

o 

i= a \ f i , ]  " 

co i = 61ri/ aie,i- 1 (11 ) 

and where the empty site fraction fo and the occupied 
sites fraction f~ are given by: 

fo = No/N. (12) 
f, = r,Ni/N, (13) 

In this paper, all calculations will be based on equation 
(10) and it will be applied to all types of molecular 
geometries. In addition, the following assumptions will 
be made. 

1. The flexibility parameter 6~ is independent of 
temperature and pressure. 

2. The close-packed volume riv* of a molecule is 
independent of temperature and pressure. 

The close-packed volume of a mer is v* ; it is also the 
volume of a lattice site. The close-packed volume of 
Nlr  1-mers, N2r2-mers . . . . .  and Nkrk-mers (no holes) is : 

V *  = ( r l N  1 + r2N 2 + . . .  q- rkNk)V* 

k 

= Z riNiv* = rNv* 
i = l  

(14) 

If p* is the close-packed mass density, then the 
close-packed molecular volume is given by: 

riv* = Mi/p* (15) 

where Mi is the molecular weight of rrmer. As a first 
approximation p* is equal to the crystal density. 
Equation (15) provides a useful means of estimating the 
close-packed molecular volume, riv*. The volume 
associated with an empty lattice site (a hole ) is also equal 
to v*; the volume of the system is therefore: 

V = (  N°+~=l~ r'N') v * = N r v * = V * / f  (16) 

where 
k k 

f =  ~, r,N,/N~ = ~ f~ (17) 
i = 1  i = 1  

If the energy of the lattice depends only on nearest- 
neighbour interactions, the lattice energy (attractive) can 
be generally written as: 

E = - ( z / 2 ) N , ~ p ( i , j ) e i j  (18) 
i j 

where eo is the pair interaction energy between 
components i and j and p(i,j) is the pair (joint) 
probability of an (i, j)  pair in the system. In the present 
case, there are only two components : hole and mer. The 
only non-zero pair-interaction energy is the one 
associated with non-bonded mer-mer  interactions; 
hole-hole, hole-mer and bonded mer-mer pairs are 
assigned a zero energy. If random mixing of hole and 
molecules is assumed, i.e. the same approximation 
invoked in the evaluation of Q, then the probability of 
a non-bonded, mer-mer interaction is ~ 7-19: 

p(mer, mer)=(i=~ q~N~)Z/NqNr (19) 

or in the large z limit becomes: 

lim p(mer, mer) = r iNi /N  r = f 2  (20) 
z ~  i = l  

Thus, from equations (18), (19) and (20), the lattice 
energy is : 

E = - N , ( z e / 2 ) f  2 (21) 

By using equations (14) and (16), it follows: 

E/rN = -e*(  V* /V) = -e* f  (22) 

where ~ is the non-bonded, mer-mer  interaction energy 
and 

e* = ze/2 (23) 

is the total interaction energy per mer. The quantity rie* 
is the characteristic interaction energy per molecule in 
the absence of holes; 5" is also the energy required to 
create a lattice vacancy (hole). 

Since E and Q are functions of a single parameter, i.e. 
the number of holes in the lattice, the double sum over 
E and V required in the evaluation of the partition 
function can be replaced by a single sum over No: 

Z ( T , P ) =  ~ f~exp[-f l ' (E + PV)] (24) 
No = 0 
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where 

fl'= 1/kT (25) 

When the above sum is approximated to be its 
maximum term, the Gibbs free energy G is equal to: 

G = E + P V -  k T l n ~  (26) 

Using equations (10), (16), (21) and (26), G can be 
expressed in dimensionless variables as: 

= G/rNe* 

= - ~  + P~ + 7"/ (~  - 1 ) l n ( 1  - t3) + lln13 
L r 

i=l kr~l \ o g # j  

1 1 / ~ / , r ,  ~ (~P#) (28) 
r i i=i  

where 7", P, ~ and ~ are the reduced temperature, pressure, 
volume and density, respectively, i.e. 

T =  T/T* T* = e*/k (29) 
P = P/P* P* = e*/v* (30) 

= l i p  = V/V* V* = N(rv*) (31) 

The total occupied sites fraction f and the empty site 
fraction fo are related to the mass density p and the 
close-packed mass density p* by: 

f = p/p* = t5 = i/~ (32) 

To = 1 - p (33) 

The minimum value of the free energy is found in the 
usual way : 

0G = 0 (34) 
dv ~,P 

which yields : 

152 + P + ~ l n ( 1  - 15) + (1 - !)13] = 0 (35) 

P V / N k T =  rP~/Tr= 1 - r[1 +ln(1  - ~ ) / ~  + P/7"] 

(36) 

Equation (35) is the equation of state for the system. It 
must always be kept in mind that /3 is a dependent 
variable and P and ~ are independent variables in the 
pressure ensemble. Equation (36) contains relations 
between the macroscopic variables and the reduced 
variables. 

Equations (26), (27) and (35) contain the complete 
thermodynamic description of the model fluid ; all other 
thermodynamic properties follow from standard thermo- 
dynamic formulae. For example, the thermal expansion 
coefficient ct and isothermal compressibility fl are given 
by : 

= L  OV = - ~ l n / ~  
o~ - V OTIv ~T Iv 

= l d V  d l n / ~  

f l -  V dP r aP T 

(37) 

(38) 

1 ÷ p~2 
Ta = (39) 

~v[- l / (~-  1) + 1/r] - 2 

Pfl = ~r~[ 1/(~ - 1) + l/r] - 2 (40) 

Determination of molecular parameters 
A pure fluid is completely characterized by three scale 

factors (T*, P* and p*) and r (where r represents a mean 
value of chain-length distribution). The number of sites 
ri occupied by the ith molecule and its molecular weight 
Mi are related to the scale factors by: 

RT*p*/P* = v'p* = MJr  i (41) 

and 

P*v*/RT* = l (42) 

where R is the gas constant. 
Since r remains explicit in the reduced equation of 

state, a simple corresponding-states principle is not, in 
general, satisfied. However, for a polymer liquid 

k 
r = E x i r i ~  (:~ 

i=l 

and the equation of state reduces to : 

p2 + p + T[ln(1 - /5 )  + p] = 0 (43) 

Thus, all polymer liquids of sufficiently high molecular 
weight should satisfy a corresponding-states principle. 
Equation-of-state parameters have been determined for 
the polymers by a non-linear least-squares fit of equation 
(43) to experimental density data 21-25. 

For convenience, we assume that the scale factors have 
nothing to do with the molecular chain length. Thus, for 
a polydisperse polymer fluid, the scale factors are 
identical with the scale factors of sufficiently high 
molecular weight polymer liquids. 

A special case 
When the molecular weight of the system obeys a Flory 

distribution 26 in a system, i.e. 

then 

N,, = N*(1 - q)2q,,-1 (44) 

1 
r - (45) 

1 - q  

qiz = ri(z - 2) + 2 (46) 

N, = N O + N* (47) 

N~=No +(1-2--qz )N* (48) 

Nr ' (Nq '~  z/2 ~,, N "(1-e)~e'- 1 
~ = N o , \ ~ , ! /  1~[ (~ , , )  (49) 

)N*(1 -q)2qri- 1 
l i m ~ = ( l ~  N°]-[ _~(°', (50) 

fo = No/N*, f~, = ri(1 - q)=q,,-1 (51) 

where N* is the total number of mers in the system; q, 
an independent variable, is the parameter of reaction 
extent; N,, is the number of rcmers; ~,, is the flexibility 
parameter of r~-mer; a,, is the symmetry number of 
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r/-mer; and ~,, = 6rfJor,e"-1. Thus, we have'  

= - /5  +/3~ + 7"1(~ - 1 )ln(1 - / 5 )  C 

+ (1 - q) ln~(1 - q)2 + q + qlnq 

+ (1 - q)2~q"-lln ° r ' r ,  ~ ]  (52) 

In a similar manner to the derivation of equations (35), 
(36), (39) and (40), we have: 

t52 + P + 7"[In(1 - / 5 )  + qtS] = 0 (equation-of-state) 

(53) 

PV/N*(1-q )kT-  I P~/~F 
1 - q  

= 1 - - - 1 ~ [ 1  + ln(1 - /5) / /5  + P/~ ' ]  (54) 
1 - q  

1 + p~2 
To~ = ~ (55) 

T~[1/(~ - 1) + (1 - q)] - 2 
p~2 

Pfl = _ (56) 
T ~ [ 1 / ( ~ -  1) + (1 - q)] - 2 

These results are identical with equations (35), (36), (39) 
and (40) if 1/1 - q is substituted by r. 

DISCUSSION AND CONCLUSIONS 

From the above derivation it is shown that the effect of 
polydispersity on the equation of state cannot be ignored, 
except for polymer liquids of sufficiently high molecular 
weight. The equation-of-state, T~, and Pfl are affected 
by 1/r when the molecular weight of polymer liquid is 
not very high or the distribution of molecular weights is 
not very narrow. The influence of polydispersity or r 
decreases with increase of molecular weight or r and 
increases with distribution width. When t /=  1, i.e. the 
polymer fluid is monodisperse, our theory reduces to the 
lattice-fluid theory of Sanchez and Lacombe 7 for a 
monodisperse system. In this case, r i = r, ~i = 6, tri = o, 
~og = (o, ~0g = i and the summation over i is not needed, 
thus we have: 

~ = - / 5 + / 3 ~ +  7, ( ~ _ l ) l n ( l _ ~ 5 ) + _ l n  
y 

and 

(57) 

F / 1 \  q 
~= + P + 7"[ ln (1 -~)+[ l -Lr )~ l=O (58) 

where r (a constant) is the number of sites which an 
r-mer occupies. This is identical to the LF theory for a 
monodisperse system 7. The forms of the expressions for 
T~ and Pfl are the same as those in equations (39) and 
(40), except that r is distinct. 

When q = 0, the polydispersity index (~/) is equal to 
unity for a Flory distribution. Then, we can obtain: 

(~ =/5 + P ~ +  7 " [ ( ~ - 1 ) l n ( 1 - / 5 )  + ln/5 + l n ( ~ ) ]  

(59) 

/52 + P + Tln(1  - ~) = 0 (60) 

1 + p~2 
Tot - (61) 

7v 2 
- - - 2  
~ - 1  

p~2 
Tfl - (62) 

T/52 
- - -  2 
~ - 1  

This is the same as the LF theory for a monodisperse 
system when r = 1. 

The main conclusions of this paper are summarized as 
follows. 

1. Only three scale factors and the molecular-weight 
distribution are required to describe a polydisperse 
polymer fluid. These scale factors can be determined 
for a polymer of sufficiently high molecular weight. 

2. Polymer liquids of suffÉciently high molecular weight 
satisfy a corresponding-states principle. 

3. The influence of polydispersity decreases with increase 
of molecular weight and increases with distribution 
width. 

4. The LF theory of Sanchez and Lacombe v for 
monodisperse polymers is a special case of the present 
theory. 

5. The present theory is a special case of the LF theory 
of Lacombe and Sanchez 8 for fluid mixtures which are 
regarded as the same fluid. 
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